News
Entertainment
Science & Technology
Life
Culture & Art
Hobbies
News
Entertainment
Science & Technology
Culture & Art
Hobbies
In this two-part series, we show how you can import and export using Parquet and CSV to quickly gather insights from your existing graph data. Part 1 introduces the import and export functionalities, and walks you through how to quickly get started with them. In Part 2, we show how you can use the new data mobility improvements in Neptune Analytics to enhance fraud detection.
In this two-part series, we show how you can import and export using Parquet and CSV to quickly gather insights from your existing graph data. In Part 1, we introduced the import and export functionalities, and walked you through how to quickly get started with them. In this post, we show how you can use the new data mobility improvements in Neptune Analytics to enhance fraud detection.
In this post, we demonstrate how to use the OpenSearch Ingestion’s Lambda processor to generate embeddings for your source data and ingest them to an OpenSearch Serverless vector collection. This solution uses the flexibility of OpenSearch Ingestion pipelines with a Lambda processor to dynamically generate embeddings.
In this post, we show you how Amazon Web Services (AWS) helps in solving forecasting challenges by customizing machine learning (ML) models for forecasting. We dive into Amazon SageMaker Canvas and explain how SageMaker Canvas can solve forecasting challenges for retail and consumer packaged goods (CPG) enterprises.
Skello is a human resources (HR) software-as-a-service (SaaS) platform that focuses on employee scheduling and workforce management. It caters to various sectors, including hospitality, retail, healthcare, construction, and industry. In this post, we show how Skello uses AWS Database Migration Service (AWS DMS) to synchronize data from an monolithic architecture to microservices and perform data ingestion from the monolithic architecture and microservices to our data lake.
Amazon MemoryDB is a Valkey– and Redis OSS-compatible, durable, in-memory database service that delivers ultra-fast performance. With MemoryDB, data is stored in memory with Multi-AZ durability, which enables you to achieve microsecond read and single-digit millisecond write latency and high throughput. MemoryDB is often used for building durable microservices and latency-sensitive database workloads such as […]
Orca Security, an AWS Partner, is an independent cybersecurity software provider whose patented agentless-first cloud security platform is trusted by hundreds of enterprises globally. At Orca Security, we use a variety of metrics to assess the significance of security alerts on cloud assets. Our Amazon Neptune database plays a critical role in calculating the exposure of individual assets within a customer’s cloud environment. By building a graph that maps assets and their connectivity between one another and to the broader internet, the Orca Cloud Security Platform can evaluate both how an asset is exposed as well as how an attacker could potentially move laterally within an account. In this post, we explore some of the key strategies we’ve adopted to maximize the performance of our Amazon Neptune database.
Modern applications are built as a group of microservices, and the latency for one component can impact the performance of the entire system. Monitoring latency is critical for maintaining optimal performance, enhancing user experience, and maintaining system reliability. In this post, we explore ways to monitor latency, detect anomalies, and troubleshoot high-latency issues effectively for your self-designed (node-based) ElastiCache clusters.
In this post, we address common challenges associated with manual MSK topic configuration management and present a robust Terraform-based solution. This solution supports both provisioned and serverless MSK clusters.
In this post, we show you how Kyndryl integrated Amazon Q Business with ServiceNow in a few simple steps. You will learn how to configure Amazon Q Business and ServiceNow, how to create a generative AI plugin for your ServiceNow incidents, and how to test and interact with ServiceNow using the Amazon Q Business web experience. This post will help you enhance your ServiceNow experience with Amazon Q Business and enjoy the benefits of a generative AI–powered interface.
This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security and responsible AI perspectives, demonstrating how you can apply this solution to a wider range of industry scenarios.
In this post, we showcase how to use PGRX and PL/Rust to efficiently access and manipulate all built-in PostgreSQL data types in Rust. We demonstrate how to write performant functions that create and serialize JSON objects that include these built-in types. These functions are directly usable in your database and use the newly supported serde and serde_json crates. We also walk through deploying an Amazon RDS for PostgreSQL instance with PL/Rust enabled, and how PGRX type mapping allows you to use all built-in PostgreSQL types in a JSON object.
In this post, we show you how EUROGATE uses AWS services, including Amazon DataZone, to make data discoverable by data consumers across different business units so that they can innovate faster. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.
In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.
In this post, we show how to extend Amazon Bedrock Agents to hybrid and edge services such as AWS Outposts and AWS Local Zones to build distributed Retrieval Augmented Generation (RAG) applications with on-premises data for improved model outcomes. With Outposts, we also cover a reference pattern for a fully local RAG application that requires both the foundation model (FM) and data sources to reside on premises.
The research team at AWS has worked extensively on building and evaluating the multi-agent collaboration (MAC) framework so customers can orchestrate multiple AI agents on Amazon Bedrock Agents. In this post, we explore the concept of multi-agent collaboration (MAC) and its benefits, as well as the key components of our MAC framework. We also go deeper into our evaluation methodology and present insights from our studies.
Juicebox is an AI-powered talent sourcing search engine, using advanced natural language models to help recruiters identify the best candidates from a vast dataset of over 800 million profiles. At the core of this functionality is Amazon OpenSearch Service, which provides the backbone for Juicebox’s powerful search infrastructure, enabling a seamless combination of traditional full-text search methods with modern, cutting-edge semantic search capabilities. In this post, we share how Juicebox uses OpenSearch Service for improved search.
The Education and Training Quality Authority (BQA) plays a critical role in improving the quality of education and training services in the Kingdom Bahrain. BQA reviews the performance of all education and training institutions, including schools, universities, and vocational institutes, thereby promoting the professional advancement of the nation’s human capital. In this post, we explore how BQA used the power of Amazon Bedrock, Amazon SageMaker JumpStart, and other AWS services to streamline the overall reporting workflow.
This post showcases how to use Spark on AWS Glue to seamlessly ingest data into OpenSearch Service. We cover batch ingestion methods, share practical examples, and discuss best practices to help you build optimized and scalable data pipelines on AWS.
This post shows how MuleSoft introduced a generative AI-powered assistant using Amazon Q Business to enhance their internal Cloud Central dashboard. This individualized portal shows assets owned, costs and usage, and well-architected recommendations to over 100 engineers.
In this post, we propose a solution using DigitalDhan, a generative AI-based solution to automate customer onboarding and digital lending. The proposed solution uses Amazon Bedrock Agents to automate services related to KYC verification, credit and risk assessment, and notification. Financial institutions can use this solution to help automate the customer onboarding, KYC verification, credit decisioning, credit underwriting, and notification processes.
In this post, we explore how Deep Instinct’s generative AI-powered malware analysis tool, DIANNA, uses Amazon Bedrock to revolutionize cybersecurity by providing rapid, in-depth analysis of known and unknown threats, enhancing the capabilities of AWS System and Organization Controls (SOC) teams and addressing key challenges in the evolving threat landscape.
As organizations navigate the complexities of the digital realm, generative AI has emerged as a transformative force, empowering enterprises to enhance productivity, streamline workflows, and drive innovation. To maximize the value of insights generated by generative AI, it is crucial to provide simple ways for users to preserve and share these insights using commonly used tools such as email. This post explores how you can integrate Amazon Q Business with Amazon SES to email conversations to specified email addresses.
This blog post introduces a new disk-based vector search approach that allows efficient querying of vectors stored on disk without loading them entirely into memory. By implementing these quantization methods, organizations can achieve compression ratios of up to 64x, enabling cost-effective scaling of vector databases for large-scale AI and machine learning applications.
Vacasa is North America’s leading vacation rental management platform, revolutionizing the rental experience with advanced technology and expert teams. In the competitive short-term vacation property management industry, efficient systems are critical. To maintain its edge and continue providing top-notch service, Vacasa needed to modernize its primary transactional database to improve performance, provide high availability, and reduce costs. In this post, we share Vacasa’s journey from Amazon Relational Database Service (Amazon RDS) for MariaDB to Amazon RDS for MySQL, and finally to Amazon Aurora, highlighting the technical steps taken and the outcomes achieved.
In our previous post Backtesting index rebalancing arbitrage with Amazon EMR and Apache Iceberg, we showed how to use Apache Iceberg in the context of strategy backtesting. In this post, we focus on data management implementation options such as accessing data directly in Amazon Simple Storage Service (Amazon S3), using popular data formats like Parquet, or using open table formats like Iceberg. Our experiments are based on real-world historical full order book data, provided by our partner CryptoStruct, and compare the trade-offs between these choices, focusing on performance, cost, and quant developer productivity.
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. In this post, I’ll show you how to use Amazon Bedrock—with its fully managed, on-demand API—with your Amazon SageMaker trained or fine-tuned model.
In this post, we show you how Parameta used Amazon Bedrock Flows to transform their manual client email processing into an automated, intelligent workflow that reduced resolution times from weeks to days while maintaining high accuracy and operational control.
In this blog post, we explore a client services agent assistant application developed by the London Stock Exchange Group (LSEG) using Amazon Q Business. We will discuss how Amazon Q Business saved time in generating answers, including summarizing documents, retrieving answers to complex Member enquiries, and combining information from different data sources (while providing in-text citations to the data sources used for each answer).
Amazon DynamoDB enables you to back up your table data continuously by using point-in-time recovery (PITR). When you enable PITR, DynamoDB backs up your table data automatically with per-second granularity. PITR helps protect you against accidental writes and deletes. For example, if a test script accidentally writes to a production DynamoDB table, or someone mistakenly […]
Generative AI applications should be developed with adequate controls for steering the behavior of FMs. Responsible AI considerations such as privacy, security, safety, controllability, fairness, explainability, transparency and governance help ensure that AI systems are trustworthy. In this post, we demonstrate how to use the AWS generative AI best practices framework on AWS Audit Manager to evaluate this insurance claim agent from a responsible AI lens.
This post explores how to automate Amazon OpenSearch Service cluster management using CI/CD best practices. It presents two options: the Terraform OpenSearch provider and the Evolution library. The solution demonstrates how to use AWS CDK, Lambda, and CodeBuild to implement automated index template creation and management. By applying these techniques, organizations can improve the consistency, reliability, and efficiency of their OpenSearch operations.
This blog post with accompanying code presents a solution to experiment with real-time machine translation using foundation models (FMs) available in Amazon Bedrock. It can help collect more data on the value of LLMs for your content translation use cases.
In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.
Amazon AppFlow bridges the gap between Google applications and Amazon Redshift, empowering organizations to unlock deeper insights and drive data-informed decisions. In this post, we show you how to establish the data ingestion pipeline between Google Analytics 4, Google Sheets, and an Amazon Redshift Serverless workgroup.
In this post, we focus on working with the features of mysql_fdw PostgreSQL extension on Amazon RDS for PostgreSQL to help manage a large set of data that on an external database scenarios. It enables you to interact with your MySQL database for importing individual/large/selectively number of objects at the schema level and simplifying how we get information about the MySQL/MariaDB schema, to make it easier to ultimately read/write data. We will also provide an introduction to understand query performance on foreign tables.
In this post, we discuss integer sequence overflow, its causes, and—most importantly—how to efficiently set up alerts using Amazon SNS and use AWS Lambda to resolve such issues in Amazon Aurora PostgreSQL-Compatible Edition and Amazon RDS for PostgreSQL.
There are a variety of different techniques available to support data masking in databases, each with their trade-offs. In this post, we explore dynamic data masking, a technique that returns anonymized data from a query without modifying the underlying data. In this post, we discuss a dynamic data masking technique based on dynamic masking views. These views mask personally identifiable information (PII) columns for unauthorized users. This post discusses how to implement this technique in Amazon RDS for PostgreSQL and Amazon Aurora PostgreSQL including Babelfish for Aurora PostgreSQL.