Mitigating Hallucinations in Large Vision-Language Models: A Latent Space Steering Approach - MarkTechPost
Hallucination remains a significant challenge in deploying Large Vision-Language Models (LVLMs), as these models often generate text misaligned with visual inputs. Unlike hallucination in LLMs, which arises from linguistic inconsistencies, LVLMs struggle with cross-modal discrepancies, leading to inaccurate image descriptions or incorrect spatial relationships. These models leverage vision encoders, such as CLIP, alongside pretrained text decoders to map visual information into language. Despite their strong performance in tasks like image captioning, visual question answering, and medical treatment planning, LVLMs remain prone to hallucination, which limits their real-world applicability. The issue stems from various factors, including statistical biases in pretraining, an